Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 225
Filter
Add more filters










Publication year range
1.
Anal Chem ; 96(18): 7304-7310, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38651947

ABSTRACT

Radicals can feature theoretically 100% light utilization owing to their nonelectron spin-forbidden transition and represent the most advanced luminescent materials at present. 2,2,6,6-Tetramethyl-1-piperidinyloxy (TEMPO) acts as a typically stable radical with very broad applications. However, their luminescent properties have not been discovered to date. In the present work, we observed the bright electrochemiluminescence (ECL) emission of TEMPO with a higher efficiency (72.3%) via the electrochemistry and coreactant strategies for the first time. Moreover, the radical-based ECL achieved high detection toward boron acid with a lower limit of detection (LOD) of 1.9 nM. This study offers a new approach to generate emissions for some unconventional luminophores and makes a major breakthrough in the field of new luminescent materials as well.

2.
Chem Sci ; 15(15): 5581-5588, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38638210

ABSTRACT

Exploring novel electrochemiluminescence (ECL) molecules with high efficiency and good stability in aqueous solutions is crucial for achieving highly sensitive detection of analytes. However, developing chiral luminophores with efficient ECL performance is still a challenge. Herein, we first uncover that artemisinin (ART), a well-known chiral antimalarial drug, features a strong ECL emission at 726 nm with the assistance of a co-reactant potassium persulfate (K2S2O8), and an ECL efficiency of 195.3%, compared to that of standard Ru(bpy)3Cl2/K2S2O8. Mechanistic studies indicate that the strong ECL signal of ART is generated when the excited state formed by the reduction of ART peroxide bonds and combination with persulfate returns to the ground state. Significantly, we found that the ECL sensor based on chiral ART could efficiently identify and detect chiral cysteine (Cys) through ECL signals, with a lower limit of detection of 3.7 nM for l-Cys. Density functional theory calculations and scanning electrochemical microscopy technology further confirm that the disparity in the ECL signals is attributed to the different affinity between chiral ART and d/l-Cys, resulting in distinct electron transfer rates. The study demonstrates a new role of ART in ECL investigation and for the first time, achieves the development of ART for the enantioselective recognition and sensitive detection of chiral substances. This will be of vital significance for ECL and chirality research.

3.
Anal Chem ; 96(16): 6202-6208, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38598750

ABSTRACT

New strategies for accurate and reliable detection of adenosine triphosphate (ATP) with portable devices are significant for biochemical analysis, while most recently reported approaches cannot satisfy the detection accuracy and independent of large instruments simultaneously, which are unsuitable for fast, simple, and on-site ATP monitoring. Herein, a unique, convenient, and label-free point-of-care sensing strategy based on novel copper coordination polymer nanoflowers (CuCPNFs) was fabricated for multimode (UV-vis, photothermal, and RGB values) onsite ATP determination with high selectivity, sensitivity, and accuracy. The resulting CuCPNFs with a 3D hierarchical structure exhibit the ATP-triggered decomposition behavior because the competitive coordination between ATP and the copper ions of CuCPNFs can result in the formation of ATP-Cu, which reveals preeminent peroxidase mimics activity and can accelerate the oxidation of 3, 3', 5, 5'-tetramethylbenzidine (TMB) to form oxTMB. During this process, the detection system displayed not only color changes but also a strong NIR laser-driven photothermal effect. Thus, the photothermal and color signal variations are easily monitored by a portable thermometer and a smartphone. This multimode point-of-care platform can meet the requirements of onsite, without bulky equipment, accuracy, and reliability all at once, greatly enhancing its application in practice and paving a new way in ATP analysis.


Subject(s)
Adenosine Triphosphate , Copper , Polymers , Copper/chemistry , Adenosine Triphosphate/analysis , Polymers/chemistry , Point-of-Care Systems , Humans , Nanostructures/chemistry , Limit of Detection , Colorimetry , Benzidines/chemistry , Point-of-Care Testing
4.
Mikrochim Acta ; 191(5): 274, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635036

ABSTRACT

Pharmaceuticals and personal care products (PPCPs) have a significant impact on the environment and human health, due to their sometimes toxic and carcinogenic characteristics. Therefore, an innovative chemosensor was constructed for ultrasensitive determination of two typical PCCPs (hydroquinone (HQ) and catechol (CC)) in several minutes. The homemade chemosensor (UiO-67@GO/MWCNTs) consisted of MOF(UiO-67), graphene oxide (GO), and multi-walled carbon nanotubes (MWCNTs) composites; it was a networked, structurally sparse, porosity-rich, homogeneous octahedral composite, and had ultra-high electrical conductivity, which provided lots of active adsorption sites, promote charge transfer, and enrich lots of molecules to be measured in a few minutes. The prepared electrochemical sensor showed good long-term stability, applicability, reproducibility, and immunity to interference for the determination of HQ and CC, with a wide linear range of response of 5.0 ~ 940 µM for both HQ and CC, and a low limit of detection with satisfactory recoveries. In addition, a new strategy of using MOF composites as the basis for electrochemical determination of organic small molecules was established, and a new platform was constructed for the quantitative determination of organic small molecules in various environmental samples.

5.
Chem Commun (Camb) ; 60(26): 3575-3578, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38470032

ABSTRACT

ZnO quantum dots (QDs) supported on porous nitrogen-doped carbon (ZnOQDs/P-NC) exhibited excellent electrochemical performance for the electroreduction of CO2 to CO with a faradaic efficiency of 95.3% and a current density of 21.6 mA cm-2 at -2.2 V vs. Ag/Ag+.

6.
Nano Lett ; 24(9): 2912-2920, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38391386

ABSTRACT

Nanozymes with peroxidase-like activity have been extensively studied for colorimetric biosensing. However, their catalytic activity and specificity still lag far behind those of natural enzymes, which significantly affects the accuracy and sensitivity of colorimetric biosensing. To address this issue, we design PdSn nanozymes with selectively enhanced peroxidase-like activity, which improves the sensitivity and accuracy of a colorimetric immunoassay. The peroxidase-like activity of PdSn nanozymes is significantly higher than that of Pd nanozymes. Theoretical calculations reveal that the p-d orbital hybridization of Pd and Sn not only results in an upward shift of the d-band center to enhance hydrogen peroxide (H2O2) adsorption but also regulates the O-O bonding strength of H2O2 to achieve selective H2O2 activation. Ultimately, the nanozyme-linked immunosorbent assay has been successfully developed to sensitively and accurately detect the prostate-specific antigen (PSA), achieving a low detection limit of 1.696 pg mL-1. This work demonstrates a promising approach for detecting PSA in a clinical diagnosis.


Subject(s)
Biosensing Techniques , Hydrogen Peroxide , Male , Humans , Prostate-Specific Antigen , Immunoassay/methods , Antioxidants , Peroxidases , Colorimetry/methods , Biosensing Techniques/methods
7.
Chem Commun (Camb) ; 60(20): 2808-2811, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38362798

ABSTRACT

A rapid and highly selective naked-eye detection of hydrochloric acid (HCl) in an aqueous medium was established using HCl-triggered redispersion of gold nanoparticle aggregates.

8.
Small ; : e2311694, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363062

ABSTRACT

As a fundamental product of CO2 conversion through two-electron transfer, CO is used to produce numerous chemicals and fuels with high efficiency, which has broad application prospects. In this work, it has successfully optimized catalytic activity by fabricating an electrocatalyst featuring crystalline-amorphous CoO-InOx interfaces, thereby significantly expediting CO production. The 1.21%CoO-InOx consists of randomly dispersed CoO crystalline particles among amorphous InOx nanoribbons. In contrast to the same-phase structure, the unique CoO-InOx heterostructure provides plentiful reactive crystalline-amorphous interfacial sites. The Faradaic efficiency of CO (FECO ) can reach up to 95.67% with a current density of 61.72 mA cm-2 in a typical H-cell using MeCN containing 0.5 M 1-Butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF6 ) as the electrolyte. Comprehensive experiments indicate that CoO-InOx interfaces with optimization of charge transfer enhance the double-layer capacitance and CO2 adsorption capacity. Theoretical calculations further reveal that the regulating of the electronic structure at interfacial sites not only optimizes the Gibbs free energy of *COOH intermediate formation but also inhibits HER, resulting in high selectivity toward CO.

9.
Anal Chem ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324915

ABSTRACT

Nanozymes with peroxidase (POD)-like activity have garnered significant attention due to their exceptional performance in colorimetric assays. However, nanozymes often possess oxidase (OD) and POD-like activity simultaneously, which affects the accuracy and sensitivity of the detection results. To address this issue, inspired by the catalytic pocket of natural POD, a single-atom nanozyme with FeN5 configuration is designed, exhibiting enhanced POD-like activity in comparison with a single-atom nanozyme with FeN4 configuration. The axial N atom in FeN5 highly mimics the amino acid residues in natural POD to optimize the electronic structure of the metal active center Fe, realizing the efficient activation of H2O2. In addition, in the presence of both H2O2 and O2, FeN5 enhances the activation of H2O2, effectively avoiding the interference of dissolved oxygen in colorimetric sensing. As a proof-of-concept application, a colorimetric detection platform for uranyl ions (UO22+) in seawater is successfully constructed, demonstrating satisfactory sensitivity and specificity.

10.
Small Methods ; 8(2): e2300163, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37316981

ABSTRACT

The triazine-based covalent organic frameworks (tCOF), an intriguing subtype of COFs, are expected as highly promising photocatalysts for various photocatalytic applications owing to their fully conjugated structures and nitrogen-rich skeletons. However, the inherent hydrophobicity and fast recombination of photoexcited electron-hole pairs are two main factors hindering the application of tCOF in practical photocatalytic reactions. Here, a post-synthetic modification strategy to fabricate superhydrophilic tCOF-based photocatalysts is demonstrated by in situ growing FeOOH clusters on TaTz COF (TaTz-FeOOH) for efficient photocatalytic oxidation of various organic pollutants. The strong polar FeOOH endows TaTz-FeOOH with good hydrophilic properties. The well-defined heterogeneous interface between FeOOH and TaTz allows the photoelectrons generated by TaTz to be consumed by Fe (III) to transform into Fe (II), synergistically promoting the separation of holes and the generation of free radicals. Compared with the unmodified TaTz, the optimized TaTz-FeOOH (1%) shows excellent photocatalytic performance, where the photocatalytic degrade rate (k) of rhodamine B is increased by about 12 times, and the degradation rate is maintained at 99% after 5 cycles, thus achieving efficient removal of quinolone antibiotics from water. This study provides a new avenue for the development of COF-based hydrophilic functional materials for a wide range of practical applications.

11.
Anal Chem ; 96(1): 110-116, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38150391

ABSTRACT

BiVO4 is a promising photoanode for photoelectrochemical (PEC) water splitting but suffers from high charge carrier recombination and sluggish surface water oxidation kinetics that limit its efficiency. In this work, a model of sulfur-incorporated FeOOH cocatalyst-loaded BiVO4 was constructed. The composite photoanode (BiVO4/S-FeOOH) demonstrates an enhanced photocurrent density of 3.58 mA cm-2, which is 3.7 times higher than that of the pristine BiVO4 photoanode. However, the current explanations for the generation of enhanced photocurrent signals through the incorporation of elements and cocatalyst loading remain unclear and require further in-depth research. In this work, the hole transfer kinetics were investigated by using a scanning photoelectrochemical microscope (SPECM). The results suggest that the incorporation of sulfur can effectively improve the charge transfer capacity of FeOOH. Moreover, the oxygen evolution reaction model provides evidence that S-doping can induce a "fast" surface catalytic reaction at the cocatalyst/solution interface. The work not only presents a promising approach for designing a highly efficient photoanode but also offers valuable insights into the role of element doping in the PEC water-splitting system.

12.
Anal Chim Acta ; 1283: 341977, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37977794

ABSTRACT

Development of highly sensitive and accurate biosensors still faces a great challenge. Herein, glucose oxidase (GOx) is efficiently immobilized on the AuCu hydrogels owing to their porous structure and interfacial interaction, demonstrating enhanced catalytic activity, satisfactory stability and recyclability. Besides, by integration of AuCu@GOx and electrochromic material of Prussian blue, a sensitive and stable biosensing platform based on the excellent electrochromic property of Prussian blue and the enhanced enzyme activity of AuCu@GOx is developed, which enables the electrochemical and visual dual-mode detection of glucose. The as-constructed biosensing platform possesses a wide linear range, and good selectivity for glucose detection with a limit of detection of 0.82 µM in visual mode and 0.84 µM in electrochemical mode. This easy-to-operate biosensing platform opens a door for the practical application of the multi-mode strategy for glucose detection.


Subject(s)
Biosensing Techniques , Glucose Oxidase , Glucose Oxidase/chemistry , Enzymes, Immobilized/chemistry , Glucose , Ferrocyanides
13.
Angew Chem Int Ed Engl ; 62(46): e202312692, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37747050

ABSTRACT

The precisely modulated synthesis of programmable light-emitting materials remains a challenge. To address this challenge, we construct four tetraphenylethylene-based supramolecular architectures (SA, SB, SC, and SD), revealing that they exhibit higher electrochemiluminescence (ECL) intensities and efficiencies than the tetraphenylethylene monomer and can be classified as highly efficient and precisely modulated intramolecular aggregation-induced electrochemiluminescence (PI-AIECL) systems. The best-performing system (SD) shows a high ECL cathodic efficiency exceeding that of the benchmark tris(2,2'-bipyridyl)ruthenium(II) chloride in aqueous solution by nearly six-fold. The electrochemical characterization of these architectures in an organic solvent provides deeper mechanistic insights, revealing that SD features the lowest electrochemical band gap. Density functional theory calculations indicate that the band gap of the guest ligand in the SD structure is the smallest and most closely matched to that of the host scaffold. Finally, the SD system is used to realize ECL-based cysteine detection (detection limit=14.4 nM) in real samples. Thus, this study not only provides a precisely modulated supramolecular strategy allowing chromophores to be controllably regulated on a molecular scale, but also inspires the programmable synthesis of high-performance aggregation-induced electrochemiluminescence emitters.

14.
Anal Chem ; 95(31): 11687-11694, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37506038

ABSTRACT

Porphyrins easily aggregate due to unfavorable π-π accumulation, causing luminescent quenching in the aqueous phase and subsequently reducing luminescent efficiency. It is a feasible way to immobilize porphyrin molecules through metal-organic framework materials (MOFs). In this study, 5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin (TCPP) was introduced into the metal-organic skeleton (PCN-224) as a ligand. The result showed that the electrochemiluminescence (ECL) and photoluminescence (PL) efficiency of the MOF skeleton was 8.2 and 6.5 times higher than TCPP, respectively. Impressively, the periodic distribution of porphyrin molecules in the MOF framework can overcome the bottleneck of porphyrin aggregation, resulting in the organic ligand TCPP participating in the electron transfer reaction. Herein, based on the PCN-224, a sandwich-type ECL immunosensor was constructed for the determination of cardiac troponin I (cTnI). It provided sensitive detection of cTnI in the range of 1 fg/mL to 10 ng/mL with a detection limit of 0.34 fg/mL. This work not only innovatively exploited a disaggregation ECL (DIECL) strategy via the crystalline framework of MOF to enhance the PL and ECL efficiency of porphyrin but also provided a promising ECL platform for the ultrasensitive monitoring of cTnI.


Subject(s)
Luminescent Measurements , Glycosides/chemistry , Metal-Organic Frameworks/chemistry , Luminescent Measurements/methods , Troponin I/chemistry , Limit of Detection , Biosensing Techniques/methods , Immunoassay/methods
15.
Dalton Trans ; 52(31): 10911-10917, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37489642

ABSTRACT

Bismuth vanadate (BiVO4) has been considered a promising photoactive material in photoelectrochemical (PEC) water-splitting systems. However, the performance of BiVO4-based photoanodes is currently unsatisfactory, indicating the need for new architectural designs to improve their efficiency. In this paper, a porphyrin-phosphazene polymer (THPP-HCCP) was synthesized with a sizeable conjugated structure, and Ag particles were deposited on its surface as an organic-inorganic composite interface improvement layer. The deposition of the composite polymer film on BiVO4 resulted in a significant increase in photocurrent density, reaching up to 2.2 mA cm-2 (1.23 V vs. RHE), almost three times higher than pristine BiVO4, which benefits from the synergistic effect of Ag nanoparticles and porphyrin-phosphazene. Furthermore, photophysical and intensity-modulated photocurrent analysis demonstrated that the Ag-THPP-HCCP heterostructures could broaden the light-absorbing range and facilitate hole transfer to the semiconductor surface, resulting in an improved water oxidation process. The dynamic charge transport behavior of Ag-THPP-HCCP/BiVO4 was investigated using scanning photoelectrochemical microscopy, which showed that the rate constant (Keff) exhibits an almost 4-fold increase compared to pristine BiVO4, indicating a significant improvement in the transport of photogenerated holes. This experiment presents a novel strategy for designing high-efficiency polymer-based photoanodes.

16.
Chem Commun (Camb) ; 59(64): 9746-9749, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37482813

ABSTRACT

A novel and tunable synthesis of Fe/CuOx bimetallic catalysts has been achieved via a simple Fe-precipitation and calcination method, which was used for highly efficient CO2 electroreduction to control the wide-ranging CO to H2 ratio by simply changing the ratio of metals. The faradaic efficiency of CO could reach 86.1% with a current density of 49.1 mA cm-2. The ratio of CO/H2 could reach 1.94 to 6.18 and it was discovered that the Fe/CuOx bimetallic catalysts could easily get different ratios of syngas, which can be applied directly in industry.

17.
Se Pu ; 41(6): 457-471, 2023 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-37259870

ABSTRACT

Sample pretreatment technology plays a vital role in the analysis of complex samples and is key to the entire analytical process. Its main purpose is to separate the substance to be measured from the sample matrix or interfering substances in the sample and to achieve a state in which the instrument can be analyzed and detected. Traditional sample pretreatment techniques include liquid-liquid extraction, liquid-solid extraction, precipitation separation, solvent volatilization-rotary evaporation, filtration, and centrifugation. However, the applications of these methods are limited by their low extraction efficiency, complicated operation, long time consumption, unstable recovery, use of large amounts of organic solvents, and large error rates. Several new sample pretreatment techniques, including solid-phase extraction, magnetic solid-phase extraction, solid-phase microextraction, and dispersive solid-phase extraction, have been developed and rapidly applied to various fields to overcome the shortcomings of traditional sample pretreatment methods. However, the development of adsorbent materials with high selectivity and enrichment capability remains a challenge in sample pretreatment technology, in which adsorbents with excellent adsorption performance are crucial. In recent years, various nanomaterials with remarkable properties have been introduced and applied to sample pretreatment, and numerous nano-extraction materials with diverse functions and high selectivity and enrichment capability have been developed. Hollow nanomaterials are nanoparticles with large voids in their solid shells. Owing to their advantageous properties, which include a large effective surface area, abundant internal space, low density, variety of preparation methods, structural and functional tailorability, short mass transmission path, and high carrying capacity, hollow nanomaterials show great application potential in sample pretreatment. The extraction mechanism of these materials is based on the synergistic effects of π-π stacking, electrostatic, hydrogen-bonding, and hydrophobic interactions to achieve the efficient separation and enrichment of the target analytes. Given their noteworthy physicochemical properties, hollow nanomaterials have gained wide attention in various research fields and are considered a research frontier in the field of materials science. Changing the structure or surface properties of the core and shell can lead to various hollow nanomaterials with unique properties. Such changes can create synergy between the physicochemical properties and structural function of the original core-shell material, leading to novel materials with superior performance compared with the starting materials and broad application prospects in sample pretreatment. Nevertheless, only a few hollow nanomaterials with diverse structures and functions are currently used for sample pretreatment, and their adsorption capacity for target analytes is often unsatisfactory. Consequently, enhancing the adsorption selectivity of these materials toward various analytes is the most important step in sample pretreatment. First, hollow nanomaterials with a large specific surface area and suitable pore size can be designed to achieve the specific adsorption of target analytes of varying sizes. The combination of hollow nanomaterials with other materials presenting desirable adsorption properties could also lead to synergistic effects and enhance the performance of composite hollow nanomaterials. In addition, more green methods to prepare hollow nanomaterials with outstanding selectivity can be explored to achieve the superior adsorption of a specific target analyte. Efforts to synthesize hollow nanomaterials have been met with great success, but the available synthesis methods still suffer from complicated steps, high costs, relatively harsh conditions, and the use of highly toxic substances. This paper summarizes the main types of hollow nanomaterials, their synthesis methods, and research progress on sample pretreatment technologies (solid-phase extraction, solid-phase microextraction, magnetic solid-phase extraction, and dispersive solid-phase extraction) and describes the challenges encountered in the synthesis of hollow nanomaterials. The applications and developments of hollow nanomaterials in sample pretreatment are also discussed.

18.
J Colloid Interface Sci ; 646: 238-244, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37196497

ABSTRACT

Bismuth vanadate (BiVO4) is a promising nanomaterial for photoelectrochemical (PEC) water oxidation. However, the serious charge recombination and sluggish water oxidation kinetics limit its performance. Herein, an integrated photoanode was successfully constructed by modifying BiVO4 (BV) with In2O3 (In) layer and further decorating amorphous FeNi hydroxides (FeNi). The BV/In/FeNi photoanode exhibited a remarkable photocurrent density of 4.0 mA cm-2 at 1.23 VRHE, which is approximately 3.6 times larger than that of pure BV. And the water oxidation reaction kinetics has an over 200% increased. This improvement was mainly because the formation of BV/In heterojunction inhibited charge recombination, and the decoration of cocatalyst FeNi facilitated the water oxidation reaction kinetics and accelerated hole transfer to electrolyte. Our work provides another possible route to develop high-efficiency photoanodes for practical applications in solar conversion.

19.
Anal Chem ; 95(17): 7036-7044, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37088925

ABSTRACT

The development of superior probes is highly desirable and valuable for viscosity measurement. Herein, we designed and reported a series of diphenylbenzofulvene (DPBF)-based organic luminophores according to the molecular regulation strategy. There are two free-rotating phenyl groups attached to the rigid fluorene skeleton in the DPBF, enabling its unique propeller-like noncoplanar chemical structure. Benefiting from this, DPBFs could feature outstanding PL and ECL emissions with intriguing aggregation-induced characteristics. Experimental and theoretical investigations revealed that substituent, spatial structure, and molecular orbital energy profoundly affected their luminescent behaviors. It was disclosed that fluoro-substituted DPBF(F)2 with a smaller LUMO-HOMO band gap demonstrated the strongest ECL emission and was selected as the optimal ECL emitter. Finally, DPBF(F)2 featured a linear response to the viscosity and VC content with lower limits of detection (LOD) of 5.69 µcP and 38.2 nM, respectively. This study represents the first example of the ECL probe toward viscosity and will be of great significance for both ECL application and viscosity measurement.

20.
Anal Chem ; 95(18): 7195-7201, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37116176

ABSTRACT

A rational design of high-efficiency electrocatalysts and thus achieving sensitive electrochemical sensing remains a great challenge. In this work, single-atom indium anchored on nitrogen-doped carbon (In1-N-C) with an In-N4 configuration is prepared successfully through a high-temperature annealing strategy; the product can serve as an advanced electrocatalyst for sensitive electrochemical sensing of dopamine (DA). Compared with In nanoparticle catalysts, In1-N-C exhibits high catalytic performance for DA oxidation. The theoretical calculation reveals that In1-N-C has high adsorption energy for hydroxy groups and a low energy barrier in the process of DA oxidation compared to In nanoparticles, indicating that In1-N-C with atomically dispersed In-N4 sites possesses enhanced intrinsic activity. An electrochemical sensor for DA detection is established as a concept application with high sensitivity and selectivity. Furthermore, we also verify the feasibility of In1-N-C catalysts for the simultaneous detection of uric acid, ascorbic acid, and DA. This work extends the application prospect of p-block metal single-atom catalysts in electrochemical sensing.


Subject(s)
Dopamine , Nanoparticles , Indium , Electrochemical Techniques/methods , Carbon , Ascorbic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...